Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.571
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Coll Physicians Surg Pak ; 34(5): 527-532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720211

RESUMO

OBJECTIVE: To develop an intervention based on Notch-1 signalling pathway blockade by investigating the potential application of the neurogenic locus notch homologue protein 1(Notch-1) signalling pathway as a key regulator of chronic inflammation and adipogenesis in the treatment of hepatic insulin resistance (HIR). STUDY DESIGN: Experimental study. Place and Duration of the Study: Animal Laboratory of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China, from April 2021 to June 2022. METHODOLOGY: HIR models were established in Notch-1WT and Notch-1MAC-KO mice by high fat diet (HFD) for 16 weeks. Haematoxylin and eosin (HE) staining and oil red O (ORO) staining were used to detect inflammatory infiltration and lipid accumulation in each group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of TNF-α and IL-6. Free fatty acid (FFA) and total cholesterol (TC) were measured with relevant kits. Moreover, real-time quantitative polymerase chain reaction (PCR) was performed to detect the relative expressions of F4/80, Mcp1, and CD11b in hepatic tissues. Mass spectrometry was used to analyse the levels of triglyceride (TG), diacylglycerol (DAG) and conformite europeenne (CE) in liver tissue. Western blotting was used to detect the expression of related proteins. RESULTS: Specific knockdown of Notch-1 in macrophages decreases the relative fluorescence intensity of CD68 and attenuates inflammatory infiltration and lipid degeneration. There was no difference in plasma levels of FFA and TG. Specific knockdown of Notch-1 in macrophages decreases the expression of F4/80, Mcp1, and CD11b, as well as the levels of TG, DAG, CE, IL-6, and TNF-α. CONCLUSION: Specific knockout of Notch-1 in macrophages may reduce HIR by inhibiting the IRE1α-XBP1 signalling pathway. KEY WORDS: Hepatic insulin resistance, Macrophages, Notch-1, IRE1α, XBP1.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Macrófagos , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Receptor Notch1 , Transdução de Sinais , Animais , Camundongos , Modelos Animais de Doenças , Endorribonucleases/metabolismo , Endorribonucleases/genética , Resistência à Insulina/fisiologia , Fígado/metabolismo , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731894

RESUMO

Triptolide is a natural compound in herbal remedies with anti-inflammatory and anti-proliferative properties. We studied its effects on critical signaling processes within the cell, including Notch1 and STAT3 signaling. Our research showed that triptolide reduces cancer cell proliferation by decreasing the expression of downstream targets of these signals. The levels of each signal-related protein and mRNA were analyzed using Western blot and qPCR methods. Interestingly, inhibiting one signal with a single inhibitor alone did not significantly reduce cancer cell proliferation. Instead, MTT assays showed that the simultaneous inhibition of Notch1 and STAT3 signaling reduced cell proliferation. The effect of triptolide was similar to a combination treatment with inhibitors for both signals. When we conducted a study on the impact of triptolide on zebrafish larvae, we found that it inhibited muscle development and interfered with muscle cell proliferation, as evidenced by differences in the staining of myosin heavy chain and F-actin proteins in confocal fluorescence microscopy. Additionally, we noticed that inhibiting a single type of signaling did not lead to any significant muscle defects. This implies that triptolide obstructs multiple signals simultaneously, including Notch1 and STAT3, during muscle development. Chemotherapy is commonly used to treat cancer, but it may cause muscle loss due to drug-related adverse reactions or other complex mechanisms. Our study suggests that anticancer agents like triptolide, inhibiting essential signaling pathways including Notch1 and STAT3 signaling, may cause muscle atrophy through anti-proliferative activity.


Assuntos
Proliferação de Células , Diterpenos , Compostos de Epóxi , Fenantrenos , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Peixe-Zebra , Animais , Compostos de Epóxi/farmacologia , Fenantrenos/farmacologia , Diterpenos/farmacologia , Fator de Transcrição STAT3/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Linhagem Celular Tumoral , Receptores Notch/metabolismo
3.
Arch Microbiol ; 206(6): 249, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713385

RESUMO

Escherichia coli (E. coli) can induce severe clinical bovine mastitis, which is to blame for large losses experienced by dairy farms. Macrophage polarization into various states is in response to pathogen infections. Lycopene, a naturally occurring hydrocarbon carotenoid, relieved inflammation by controlling M1/M2 status of macrophages. Thus, we wanted to explore the effect of lycopene on polarization states of macrophages in E. coli-induced mastitis. Macrophages were cultivated with lycopene for 24, before E. coli inoculation for 6 h. Lycopene (0.5 µmol/L) significantly enhanced cell viabilities and significantly reduced lactic dehydrogenase (LDH) levels in macrophages, whereas 2 and 3 µmol/L lycopene significantly enhanced LDH activities. Lycopene treatment significantly reduced the increase in LDH release, iNOS, CD86, TNF-α, IL-1ß and phosphatase and tensin homolog (PTEN) expressions in E. coli group. 0.5 µmol/L lycopene significantly increased E. coli-induced downregulation of CD206, arginase I (ARG1), indoleamine 2,3-dioxygenase (IDO), chitinase 3-like 3 (YM1), PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR), p-mTOR, jumonji domain-containing protein-3 (JMJD3) and interferon regulatory factor 4 (IRF4) levels. Moreover, Ginkgolic acid C17:1 (a specific PTEN inhibitor), 740YPDGFR (a specific PI3K activator), SC79 (a specific AKT activator) or CHPG sodium salt (a specific NF-κB activator) significantly decreased CD206, AGR1, IDO and YM1 expressions in lycopene and E. coli-treated macrophages. Therefore, lycopene increased M2 macrophages via inhibiting NOTCH1-PI3K-mTOR-NF-κB-JMJD3-IRF4 pathway in response to E. coli infection in macrophages. These results contribute to revealing the pathogenesis of E. coli-caused bovine mastitis, providing the new angle of the prevention and management of mastitis.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Fatores Reguladores de Interferon , Licopeno , Macrófagos , NF-kappa B , Fosfatidilinositol 3-Quinases , Receptor Notch1 , Transdução de Sinais , Serina-Treonina Quinases TOR , Licopeno/farmacologia , Animais , Receptor Notch1/metabolismo , Receptor Notch1/genética , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos , Bovinos , Linhagem Celular , Feminino , Mastite Bovina/microbiologia
4.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705997

RESUMO

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Assuntos
Melanoma , Neuropeptídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Fosforilação , Ligação Proteica , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
5.
Cancer Cell ; 42(5): 904-914.e9, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38579724

RESUMO

A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.


Assuntos
Neoplasias Encefálicas , Diferenciação Celular , Isocitrato Desidrogenase , Mutação , Oligodendroglioma , Oligodendroglioma/genética , Oligodendroglioma/patologia , Oligodendroglioma/tratamento farmacológico , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Humanos , Diferenciação Celular/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem da Célula/efeitos dos fármacos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proliferação de Células/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Camundongos , Análise de Célula Única/métodos
6.
Front Immunol ; 15: 1375864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650927

RESUMO

Immunotherapy has emerged as the primary treatment modality for patients with advanced Hepatocellular carcinoma (HCC). However, its clinical efficacy remains limited, benefiting only a subset of patients, while most exhibit immune tolerance and face a grim prognosis. The infiltration of immune cells plays a pivotal role in tumor initiation and progression. In this study, we conducted an analysis of immune cell infiltration patterns in HCC patients and observed a substantial proportion of CD8+T cells. Leveraging the weighted gene co-expression network analysis (WGCNA), we identified 235 genes associated with CD8+T cell and constructed a risk prediction model. In this model, HCC patients were stratified into a high-risk and low-risk group. Patients in the high-risk group exhibited a lower survival rate, predominantly presented with intermediate to advanced stages of cancer, displayed compromised immune function, showed limited responsiveness to immunotherapy, and demonstrated elevated expression levels of the Notch signaling pathway. Further examination of clinical samples demonstrated an upregulation of the Notch1+CD8+T cell exhaustion phenotype accompanied by impaired cytotoxicity and cytokine secretion functions that worsened with increasing Notch activation levels. Our study not only presents a prognostic model but also highlights the crucial involvement of the Notch pathway in CD8+T cell exhaustion-a potential target for future immunotherapeutic interventions.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transdução de Sinais , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Prognóstico , Receptores Notch/genética , Receptores Notch/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Feminino , Biomarcadores Tumorais/genética , Receptor Notch1/genética , Pessoa de Meia-Idade
7.
PeerJ ; 12: e17222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650654

RESUMO

Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas , Metiltransferases , Neoplasias Bucais , Neovascularização Patológica , Receptor Notch1 , Proteínas Repressoras , Humanos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/irrigação sanguínea , Linhagem Celular Tumoral , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Angiogênese
8.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573832

RESUMO

BACKGROUND: Sorafenib is the first-line therapy for patients with advanced-stage HCC, but its clinical cure rate is unsatisfactory due to adverse reactions and drug resistance. Novel alternative strategies to overcome sorafenib resistance are urgently needed. Oxyberberine (OBB), a major metabolite of berberine in vivo, exhibits potential antitumor potency in various human malignancies, including liver cancer. However, it remains unknown whether and how OBB sensitizes liver cancer cells to sorafenib. METHODS: Cell viability, trypan blue staining and flow cytometry assays were employed to determine the synergistic effect of OBB and sorafenib on killing HCC cells. PCR, western blot, co-immunoprecipitation and RNA interference assays were used to decipher the mechanism by which OBB sensitizes sorafenib. HCC xenograft models and clinical HCC samples were utilized to consolidate our findings. RESULTS: We found for the first time that OBB sensitized liver cancer cells to sorafenib, enhancing its inhibitory effect on cell growth and induction of apoptosis in vitro. Interestingly, we observed that OBB enhanced the sensitivity of HCC cells to sorafenib by reducing ubiquitin-specific peptidase 7 (USP7) expression, a well-known tumor-promoting gene. Mechanistically, OBB inhibited notch homolog 1-mediated USP7 transcription, leading to the downregulation of V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), which synergized with sorafenib to suppress liver cancer. Furthermore, animal results showed that cotreatment with OBB and sorafenib significantly inhibited the tumor growth of liver cancer xenografts in mice. CONCLUSIONS: These results indicate that OBB enhances the sensitivity of liver cancer cells to sorafenib through inhibiting notch homolog 1-USP7-c-Myc signaling pathway, which potentially provides a novel therapeutic strategy for liver cancer to improve the effectiveness of sorafenib.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Sorafenibe/farmacologia , Peptidase 7 Específica de Ubiquitina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Transdução de Sinais , Linhagem Celular Tumoral , Receptor Notch1/uso terapêutico
9.
Pharmacol Res ; 203: 107142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522759

RESUMO

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.


Assuntos
Proteína ADAM17 , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor Notch1 , Sorafenibe , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Humanos , Animais , Receptor Notch1/metabolismo , Receptor Notch1/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteína ADAM17/metabolismo , Proteína ADAM17/antagonistas & inibidores , Camundongos Nus , Masculino , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos
10.
Mol Cancer ; 23(1): 65, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532427

RESUMO

BACKGROUND: Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS: LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS: TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS: TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , RNA Longo não Codificante , Canais de Cátion TRPM , Humanos , Animais , Camundongos , Neoplasias da Vesícula Biliar/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Canais de Cátion TRPM/metabolismo , Angiogênese , Linhagem Celular Tumoral , Transdução de Sinais , RNA Mensageiro , Proliferação de Células , Receptor Notch1/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474113

RESUMO

NOTCH1-related leukoencephalopathy is a new diagnostic entity linked to heterozygous gain-of-function variants in NOTCH1 that neuroradiologically show some overlap with the inflammatory microangiopathy Aicardi-Goutières syndrome (AGS). To report a 16-year-old boy harbouring a novel NOTCH1 mutation who presented neuroradiological features suggestive of enhanced type I interferon signalling. We describe five years of follow-up and review the current literature on NOTCH1-related leukoencephalopathy. Clinical evaluation, standardised scales (SPRS, SARA, CBCL, CDI-2:P, WISCH-IV and VABS-2) and neuroradiological studies were performed, as well as blood DNA analysis. For the literature review, a search was performed on Pubmed, Scopus and Web of Science up to December 2023 using the following text word search strategy: (NOTCH1) AND (leukoencephalopathy). Our patient presents clinical features consistent with other reported cases with NOTCH1 mutations but is among the minority of patients with an onset after infancy. During the five-year follow-up, we observed an increase in the severity of spasticity and ataxia. However, at the age of 16 years, our proband is still ambulatory. As for other reported patients, he manifests psychiatric features ranging from hyperactivity during childhood to anxiety and depression during adolescence. The neuroradiological picture remained essentially stable over five years. In addition to the typical findings of leukoencephalopathy with cysts and calcifications already described, we report the presence of T2-hyperintensity and T1-hypotensity of the transverse pontine fibres, enhancement in the periventricular white matter after gadolinium administration and decreased NAA and Cho peaks in the periventricular white matter on MRS. We identified a novel heterozygous variant in NOTCH1 (c.4788_4799dup), a frame insertion located in extracellular negative regulatory region (NRR)-domain as in previously published cases. Blood interferon signalling was not elevated compared to controls. This case provides further data on a new diagnostic entity, i.e., NOTCH1-related leukoencephalopathy. By describing a standardised five-year follow-up in one case and reviewing the other patients described to date, we outline recommendations relating to monitoring in this illness, emphasising the importance of psychiatric and gastroenterological surveillance alongside neurological and neuropsychological management. Studies are needed to better understand the factors influencing disease onset and severity, which are heterogeneous.


Assuntos
Cistos , Leucoencefalopatias , Malformações do Sistema Nervoso , Masculino , Adolescente , Humanos , Encéfalo , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , Mutação , Imageamento por Ressonância Magnética , Receptor Notch1/genética
12.
Eur J Immunol ; 54(5): e2350669, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339772

RESUMO

The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity. By performing transcriptomics analysis of AT macrophages (ATMs), we found that late-stage ATMs from high-fat diet mice presented with perturbed Notch signaling accompanied by robust proinflammatory and metabolic changes. To explore the hypothesis that the deregulated Notch pathway contributes to the development of AT inflammation and diet-induced obesity, we employed a genetic approach to abrogate myeloid Notch1 and Notch2 receptors. Our results revealed that the combined loss of Notch1 and Notch2 worsened obesity-related metabolic dysregulation. Body and AT weight gain was higher, blood glucose levels increased and metabolic parameters were substantially worsened in deficient mice fed high-fat diet. Moreover, serum insulin and leptin were elevated as were triglycerides. Molecular analysis of ATMs showed that deletion of Notch receptors escalated inflammation through the induction of an M1-like pro-inflammatory phenotype. Our findings thus support a protective role of myeloid Notch signaling in adipose tissue inflammation and metabolic dysregulation.


Assuntos
Tecido Adiposo , Dieta Hiperlipídica , Inflamação , Macrófagos , Obesidade , Receptor Notch1 , Receptor Notch2 , Transdução de Sinais , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Camundongos , Dieta Hiperlipídica/efeitos adversos , Inflamação/imunologia , Inflamação/metabolismo , Transdução de Sinais/imunologia , Obesidade/metabolismo , Obesidade/imunologia , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch2/metabolismo , Receptor Notch2/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino
13.
Int Immunopharmacol ; 130: 111713, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38387192

RESUMO

Asthma, a disease intricately linked to immune inflammation, is significantly influenced by the immune regulatory effect of bone mesenchymal stem cells (BMSCs). This study aims to investigate changes in the homing of BMSCs in bronchial asthma, focusing on the Notch homolog (Notch)1/Jagged1 signaling pathway's role in regulating T helper 1(Th1)/T helper 2(Th2) drift. Additionally, we further explore the effects and mechanisms of homologous BMSCs implantation in asthma-related immune inflammation. Following intervention with BMSCs, a significant improvement in the pathology of rats with asthma was observed. Simultaneously, a reduction in the expression of inflammatory cells and inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin(IL)-4, and IL-13 was observed in bronchoalveolar lavage fluid (BALF). Furthermore, there was an increase in the expression of Th1 cytokine Interferon-γ(IFN-γ)and the transcription factor T-box expressed in T cell (T-bet), while the expression of Th2 cytokine IL-13 and transcription factor GATA binding protein (GATA)-3 decreased in lung tissue. This indicates that the Th1/Th2 drift leans towards Th1, which a crucial in ameliorating asthma inflammation. Importantly, inhibition of the Notch1 signaling pathway led to an increased expression of the Stromal cell-derived factor-1(SDF-1)/C-X-C motif chemokine receptor (CXCR)4 chemokine axis. Consequently, the homing ability of bone marrow mesenchymal stem cells to asthma-affected lung tissue was significantly enhanced. BMSCs demonstrated heightened efficacy in regulating the cytokine/chemokine network and Th1/Th2 balance, thereby restoring a stable state during the immune response process in asthma. In conclusion, inhibiting the Notch signaling pathway enhances the expression of the SDF-1 and CXCR4 chemokine axis, facilitating the migration of allogeneic BMSCs to injured lung tissues. This, in turn, promotes immune regulation and improves the Th1/Th2 imbalance, thereby enhancing the therapeutic effect on asthmatic airway inflammation.


Assuntos
Asma , Células-Tronco Mesenquimais , Ratos , Animais , Camundongos , Interleucina-13/metabolismo , Asma/tratamento farmacológico , Pulmão/patologia , Citocinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Inflamação/metabolismo , Quimiocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Th2 , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Receptor Notch1/metabolismo
14.
In Vivo ; 38(2): 691-698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418142

RESUMO

BACKGROUND/AIM: This study aimed to investigate the role of NOTCH receptor 1 (NOTCH1)-mediated activation of microglia in the L5-S2 spinal dorsal horn in chronic prostatitis pain. MATERIALS AND METHODS: Rats were divided into chronic prostatitis (CP) group and control group. Complete Freund's adjuvant was injected into the prostate, and prostate pathology and pain-related behavior were monitored to assess the successful establishment of the CP-related pain model. The dorsal horn of the L5-S2 spinal cord was collected for the detection of ionized calcium-binding adapter molecule 1 (IBA-1) and NOTCH1 expression by quantitative real time polymerase chain reaction and the detection of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) by enzyme-linked immunosorbent assay. Electrical excitability was assessed with whole-cell patch clamp. In addition, NOTCH1 receptor inhibitor or inhibitor of microglial cell activation was injected into the subarachnoid space, and the pro-inflammatory cytokines in the spinal cord were detected. RESULTS: In the CP group, the expression of NOTCH1, IBA-1, TNF-α and IL-1ß began to increase at 4 days, peaked at 12 days, and began to decline at 24 days, and it was significantly higher than in the control group (p<0.01). Inhibition of microglia or NOTCH1 receptor markedly reduced the content of TNF-α and IL-1ß in the spinal cord (p<0.05). At 4, 12 and 24 days, the amplitude and frequency of neuronal action potential increased and the threshold decreased markedly as compared to the control group (p<0.05), and spontaneous action potential was noted. CONCLUSION: NOTCH1 mediates the activation of microglia in the L5-S2 spinal cord, leading to the secretion of inflammatory factors and enhanced electrical excitability of neurons, which is related to persistent and refractory chronic prostatitis-related pain.


Assuntos
Prostatite , Animais , Humanos , Masculino , Ratos , Doença Crônica , Microglia/metabolismo , Dor , Prostatite/terapia , Prostatite/metabolismo , Prostatite/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 34-39, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372115

RESUMO

Acute lung injury (ALI) is associated with the leukocyte infiltration and inflammation. Previous studies have shown that miR-146a is a valid regulator of the macrophage polarization in vitro inflammatory model. However, it is unclear whether miR-146a plays a protective role in ALI via modulating macrophage inflammation. To explore the potential therapeutic effect mechanism of miR-146a on ALI. We analyzed the expression of miR-146a in acute injured lung tissues and differentiated macrophage. Lipopolysaccharide (LPS) and interleukin-4 (IL-4) were employed in provoking the macrophage to polarization. We used miR-146a mimics to improve the overexpression of miR-146a and investigated the effect of increased miR-146a on LPS-induced ALI mice via the target of macrophage polarization. We showed that the expression of miR-146a markedly decreased in injured lung tissue and type M1 macrophage, while increased miR-146a expression exhibited in type M2 macrophage. Moreover, overexpression of miR-146a in LPS-induced macrophage reversed inflammatory M1 phenotype to anti-inflammatory M2 phenotype and mitigated inflammatory level via inhibiting Notch 1 signaling pathway. Hence, inflammation, infiltration, integrity of capillary barrier, and histology in ALI model were corrected after miR-146a overexpression treatment. These results suggested that miR-146a promotes type M2 macrophage polarization via restraining Notch 1 signaling pathway. Overexpression of miR-146a prevents inflammation damage and ameliorates lung damage after LPS induction. Therefore, miR-146a may serve as a promising target for the therapy of ALI in the future.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Receptor Notch1 , Transdução de Sinais , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , MicroRNAs/metabolismo , Receptor Notch1/metabolismo
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 57-65, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387900

RESUMO

OBJECTIVE: To observe the effect of resveratrol (Res) on T-acute lymphoblastic leukemia (T-ALL) mice, and further explore its mechanism on Notch1 signaling pathway. METHODS: Twenty-five 6-8 weeks old female C57BL/6 mice were randomly divided into control group, T-ALL group and Res group. Res group was further divided into low-Res, middle-Res and high-Res group. The percentage of leukemia cells in peripheral blood and spleen cell suspension were detected by flow cytometry and Wright-Giemsa staining, pathological morphology of spleen and bone marrow tissues were observed by HE staining, the expression levels of Notch1, Hes-1, c-Myc, miR-19b and PTEN mRNA in spleen tissue were detected by RT-qPCR, and the protein levels of Notch1, Hes-1, c-Myc, p-PTEN and PTEN were detected by Western blot. RESULTS: Compared with control group, the leukemia cells in peripheral blood of mice in T-ALL group were markedly increased, accompanied by diffuse infiltration of leukemia cells in spleen and bone marrow tissues, the mRNA levels of Notch1, Hes-1, c-Myc, miR-19b and the protein levels of Notch1, Hes-1, c-Myc were increased (P <0.01), while the expression of PTEN mRNA and protein were significantly decreased in the spleen tissue of T-ALL mice (P <0.01). The above indicators in the H-Res group were reversed compared with T-ALL group after administration of resveratrol. CONCLUSION: Resveratrol may play a role in anti T-ALL by inhibiting Notch1 signaling pathway in mice.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Camundongos , Feminino , Animais , Resveratrol/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , MicroRNAs/farmacologia , RNA Mensageiro
17.
Cancer Lett ; 585: 216647, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38301911

RESUMO

The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptor Notch1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores Notch/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3 , Transdução de Sinais
18.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383534

RESUMO

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Assuntos
Células-Tronco Hematopoéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/genética , Aorta/metabolismo , Artérias/metabolismo , Mesonefro , Gônadas/metabolismo
19.
J Integr Neurosci ; 23(2): 34, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38419443

RESUMO

BACKGROUND: Ischemic stroke is the most common form of stroke and the second most common cause of death and incapacity worldwide. Its pathogenesis and treatment have been the focus of considerable research. In traditional Chinese medicine, the root of Mongolian astragalus has been important in the treatment of stroke since ancient times. Astragalus polysaccharide (APS) is a key active ingredient of astragalus and offers therapeutic potential for conditions affecting the neurological system, the heart, cancer, and other disorders. However, it is not yet known how APS works to protect against ischemic stroke. METHODS: Rats were subjected to middle cerebral artery occlusion (MCAO) to imitate localized cerebral ischemia. Each of four experimental groups (normal, sham, MCAO, and MCAO+APS) contained 12 adult male Sprague-Dawley (SD) rats selected randomly from a total of 48 rats. Following successful establishment of the model, rats in the MCAO+APS group received intraperitoneal injection of APS (50 mg/kg) once daily for 14 days, whereas all other groups received no APS. The Bederson nerve function score and the forelimb placement test were used to detect motor and sensory function defects, while Nissl staining was used to investigate pathological defects in the ventroposterior thalamic nucleus (VPN). Immunohistochemical staining and Western blot were used to evaluate the expression of Neurogenic locus notch homolog protein 1 (Notch1), hairy and enhancer of split 1 (Hes1), phospho-nuclear factor-κB p65 (p-NFκB p65), and nuclear factor-κB p65 (NFκB p65) proteins in the VPN on the ischemic side of MCAO rats. RESULTS: APS promoted the recovery of sensory and motor function, enhanced neuronal morphology, increased the number of neurons, and inhibited the expression of Notch1/NFκB signaling pathway proteins in the VPN of rats with cerebral ischemia. CONCLUSION: After cerebral ischemia, APS can alleviate symptoms of secondary damage to the VPN, which may be attributed to the suppression of the Notch1/NFκB pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Ratos Sprague-Dawley , NF-kappa B/metabolismo , Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Acidente Vascular Cerebral/complicações , AVC Isquêmico/complicações , Receptor Notch1/metabolismo , Receptor Notch1/uso terapêutico
20.
Clin Cancer Res ; 30(10): 2225-2232, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416410

RESUMO

PURPOSE: Adenoid cystic carcinoma (ACC) is an uncommon salivary gland cancer with no approved therapies available to treat advanced, incurable disease. Recent molecular profiling efforts have identified two important subtypes: the more aggressive ACC-I is characterized by Notch pathway alterations and MYC amplification whereas ACC-II demonstrates a more indolent phenotype and TP63 overexpression. EXPERIMENTAL DESIGN: This retrospective observational cohort study involved de-identified samples from 438 patients with ACC with tumor samples sent for commercially-available molecular profiling (Caris Life Sciences). Next-generation whole-exome and whole-transcriptomic sequencing was performed on primary and metastatic samples. Immunostaining for PD-L1 and RNA deconvolution (quanTIseq) was used to explore the tumor immune microenvironment (TME). Real-world clinical and survival outcome metrics were extracted from insurance claims data. RESULTS: MYC expression was 1.61-fold higher (39.8 vs. 24.7; P < 0.0001) among NOTCH1-mutant ACC-I tumors, whereas MYB/L1 fusion rates were similar among ACC-I/II. The median B-cell fraction in the TME was higher among ACC-II (7.1% vs. 5.8%; P < 0.01), although infiltrating T cells subsets were low among either ACC subgroup (both <1%). When pooling systemic treatment categories, ACC-I patients had worse outcomes with available therapies (HR, 3.06; 95% confidence interval, 1.65-5.68; P < 0.01), with no significant difference in overall survival between ACC-I/II based on chemotherapy or VEGFR tyrosine kinase inhibitor exposure in smaller subsets. CONCLUSIONS: We confirmed the previously reported associations with MYC and TP63 in the prognostically relevant subgroups of ACC-I and -II, respectively, and report immunologic differences among these subtypes. Survival outcomes are comparatively worse in ACC-I regardless of treatment type.


Assuntos
Biomarcadores Tumorais , Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Microambiente Tumoral , Humanos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Carcinoma Adenoide Cístico/mortalidade , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/imunologia , Carcinoma Adenoide Cístico/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Neoplasias das Glândulas Salivares/mortalidade , Neoplasias das Glândulas Salivares/imunologia , Neoplasias das Glândulas Salivares/terapia , Neoplasias das Glândulas Salivares/tratamento farmacológico , Biomarcadores Tumorais/genética , Estudos Retrospectivos , Adulto , Resultado do Tratamento , Perfilação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Prognóstico , Antígeno B7-H1/genética , Receptor Notch1/genética , Regulação Neoplásica da Expressão Gênica , Idoso de 80 Anos ou mais , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA